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Abstract. We address quantum state reconstruction for d-dimensional systems based on measuring, on
the system of interest and a probe, of a single entangled observable defined on the bipartite system/probe
Hilbert space. We show that the statistics of the measurement and the knowledge of the probe preparation
suffice to reliably reconstruct the density matrix of the system, as well as the expectation value of any
desired operator, including those not corresponding to observable quantities. The statistical robustness of
the reconstruction is examined and a method is developed to minimize statistical errors by tuning the
probe preparation. Numerical simulations of the whole reconstruction procedure are also presented for
qubit systems.

PACS. 03.67.Mn Entanglement production, characterization, and manipulation – 03.65.Wj State
reconstruction, quantum tomography

QICS. 03.10.+m Entanglement measures – 25.40.+t Automated state and process tomography

1 Introduction

The state of a physical system is a mathematical tool pro-
viding the complete information on the system itself, i.e.
the capability to predict the result of any possible mea-
surement performed on the system. In classical mechan-
ics it is always possible, at least theoretically, to devise a
proper set of measurements that fully recovers the state
of a system. In quantum mechanics, on the other hand,
the problem is more complex owing to limitations posed
by Heisenberg uncertainty relations [1,2] and by the no-
cloning theorem [3–6]. Indeed, it is neither possible to per-
form a set of measurements on the system without alter-
ing its initial state, nor is possible to create a copy of the
system without knowing in advance its state. As a conse-
quence, there is no way to recover the quantum state of a
single system without any prior knowledge of it [7].

A solution to this problem is quantum tomography,
whose basic principles have been earlier introduced by
Fano [8]. Tomography is based on repeated multiple mea-
surements performed on different preparations (copies) of
the the unknown state. These measurements are extracted
from an appropriate set of observables called quorum of
observables [8,9]. Quantum tomography has been exten-
sively developed in the last decade [10,11] and exper-
imentally implemented in several different physical sys-
tems [12].

As a matter of fact, implementation of quantum
tomography needs the measurements of a quorum, i.e. a
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complete set of observables. In turn, for system with many
degrees of freedom, it may be not obvious how to measure
all of the necessary observables. For this reason, in this pa-
per we address a different method that, while still in need
of multiple copies of the unknown state, nevertheless per-
mits quantum state reconstruction by the measurement of
a single observable. This result is achieved by jointly mea-
suring the system of interest (the signal) and a second
system (the probe) whose state is known and under con-
trol of the observer. The measured observable is defined
on the bipartite Hilbert space describing the signal/probe
joint system. Upon choosing an entangled measure, i.e. an
observable that cannot be factorized in two separate mea-
surements on the system and the probe respectively, it is
possible to reconstruct the density matrix of the system,
as well as the expectation value of any desired operator,
starting from the statistics of the measurement and the
knowledge of the probe preparation (see Fig. 1).

The idea of using entangled measure in a system/pro-
be configuration has its root in the field of indirect mea-
surements for infinite dimensional systems [13,14] with
applications to the joint measurements of non commut-
ing observables [15–17] and to operational phase mea-
surements [18–20]. More recently, it has been applied
to finite dimensional systems in order to analyze the
information/disturbance trade-off [21,22], to realize mea-
surements by programmable quantum processors [23], and
to build a universal detector [24]. In this paper, we fur-
ther develop the idea of measuring a single entangled ob-
servable instead of a quorom [24] and focus our attention
on the explicit formulas connecting the statistics of the
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Fig. 1. Schematic diagram of state reconstruction by entan-
gled measurements. The system of interest (the signal ρ) and
a second system (the probe τ ) whose state is known and un-
der control of the observer are jointly measured. The observ-
able is defined on the bipartite Hilbert space describing the
signal/probe joint system. Upon choosing an entangled mea-
sure B, i.e. an observable that cannot be factorized in two
separate measurements on the system and the probe respec-
tively, it is possible to reconstruct the quantum state of the
system.

measurement to the system matrix elements, as well as
other expectation values, and on the minimization of sta-
tistical errors by suitably tuning the probe preparation.
Indeed reducing errors due to statistical fluctuations is
a relevant issue for experimental implementations. Very
recently the realization of a quasi complete Bell measure-
ment (3 over four results) has been reported [25] which,
besides information protocols, will find application in the
field of state reconstruction.

The paper is structured as follows: in the next sec-
tion we establish notation and introduce some background
material which will be used throughout the paper. In
Section 3 we deal with state reconstruction by entangled
measurements on qubit systems, whereas in Section 4 the
procedure is generalized to arbitrary finite dimension. In
Section 5 we extend the method to the reconstruction
of the expectation value of a generic operator, includ-
ing those not corresponding to observable quantities. In
Section 6 the statistical errors in the reconstruction are
evaluated and their minimization by tuning of the probe
preparation is addressed. In addition, we report the re-
sults of Monte Carlo simulated experiments illustrating
the application of the whole procedure. Finally, Section 7
closes the paper with some concluding remarks.

2 The Hilbert space H1 ⊗ H2

We denote by H1 the Hilbert space, of dimension d1, of
the signal system. Analogously, H2, of dimension d2, is
the Hilbert space of the probe. For our purposes it will
suffice to consider d1 = d2 = d, though the notation and
the results of the present section are valid also for d1 �= d2.
We write state-vectors in H1 ⊗H2 by the double-ket |ψ〉〉,
in order to distinguish states of the bipartite system from
single system ones. A generic bipartite state |ψ〉〉 can be
written as

|ψ〉〉 =
d1−1∑

i=0

d2−1∑

j=0

ψij |i〉1 ⊗ |j〉2 ≡ |Ψ〉〉 (1)

where |i〉1 and |j〉2 are orthonormal bases for H1 and
H2 respectively. Once these bases are fixed the state

|ψ〉〉 is unequivocally determined by the matrix Ψ =
[[ψij ]] [26,27]. In turn, this notation is sometimes referred
to as matrix notation. Analogously, any linear operator
A ∈ L [H1 → H2] can be written as

A =
d1−1∑

i=0

d2−1∑

j=0

aij |j〉2 1〈i|. (2)

Once bases in H1 and H2 are fixed, one can easily show
the isomorphism between the two linear spaces H1 ⊗ H2

and L [H1 → H2]. In addition, ∀ |ψ〉〉, |φ〉〉 ∈ H1 ⊗H2 one
has

〈〈ψ|φ〉〉 = Tr
[
Ψ †Φ

]
, (3)

i.e. the isomorphism is established between the Hilbert
spaces H1⊗H2 and L [H1 → H2]. A relevant consequence
of the isomorphism is the following formula, which holds
for any vector |ψ〉〉 in H1⊗H2 and any factorized operator
A⊗B

A⊗B|ψ〉〉 =
∑

ij

ψij

(
∑

lm

alm|l〉21〈m|i〉1
)

⊗
(
∑

hk

bhk|h〉12〈k|j〉2
)

=
∑

hl

⎛

⎝
∑

ij

aliψijbhj

⎞

⎠ |h〉1 ⊗ |l〉2

=
∑

ij

(
AΨBT

)
ij

|i〉 ⊗ |j〉 = |AΨBT 〉〉. (4)

Equation (4) will be used throughout the paper.

3 State reconstruction for qubits

In this section we describe state reconstruction by entan-
gled measurements on qubits. As we will see a bidimen-
sional probe suffice to obtain reconstruction, and therefore
H1 = H2 = C2. A convenient description of signal state
is obtained by its density operator in the Bloch sphere
representation i.e.

� =
1
2

3∑

j=0

sjσj (5)

where σ0 = I is the identity matrix, {σk},k = 1, 2, 3
are the Pauli matrices, s0 = 1 and the three real num-
bers s1, s2, s3 are the coefficients fully specifying the state,
which obey the relation

∑3
j=1 s

2
j ≤ 1. Analogously, the

state of the probe is written as

τ =
1
2

3∑

j=0

tjσj , t0 = 1. (6)

In order to describe entangled measure we introduce the
so-called Bell basis [28] for the bipartite space H1 ⊗ H2,
which is composed by the maximally entangled states

|ψj〉〉 = | 1√
2
σj〉〉 j = 0, 1, 2, 3. (7)
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The Bell basis is orthonormal and corresponds to the
spectral measure of an observable, referred to as the Bell
observable B =

∑3
j=0 λj |ψj〉〉〈〈ψj |, We now assume to

have an experimental apparatus measuring the Bell ob-
servables [29], i.e. sampling the probabilities {pj} of the
outcome λj and focus attention on obtaining a relation
giving these probabilities in terms of the matrix elements
of � and τ .

The signal and the probe are initially uncorrelated,
thus the system is described by the tensor product �⊗ τ .
The probabilities {pj} are given by

pj = Tr
[
�⊗ τ | 1√

2
σj〉〉〈〈 1√

2
σj |
]

= 〈〈 1√
2
σj |�⊗ τ | 1√

2
σj〉〉

= 〈〈 1√
2
σj | 1√

2
�σjτ

T 〉〉 = Tr
[
1
2
σ†

j�σjτ
T

]

= Tr
[
1
2
σj�σjτ

T

]
, (8)

and using the Bloch description

pj =
1
8

∑

kl

sktlTr
[
σjσkσjσ

T
l

]
. (9)

Our aim is now to invert equation (9) to reconstruct the
unknown coefficients sk starting from the statistics of the
measurement (the probabilities pj) and from the state of
the probe (the three coefficients tl). At first we recall the
relations σ0σj = σjσ0 = σj , σ2

j = σjσj = I = σ0, and
σiσj = εijkiσk, i �= j, εijk being the elements of the fully
antisymmetric tensor. Concerning the product of three
Pauli matrices σjσkσj we have the result

σjσkσj = (−1)1+δjk+δ0k+δ0j σk, k = 0, 1, 2, 3 (10)

which follows follows from

σjσkσj = εjkliσlσj = εjkliεljmiσm

= εjklεljmi
2σm = −σk, k = 1, 2, 3. (11)

Using equations (10) and the relation σT
l = (−1)δ2lσl we

rewrite equation (9) as

pj =
1
8

∑

kl

sktlTr
[
σjσkσjσ

T
l

]
=

1
8

∑

k

sktkTr
[
σjσkσjσ

T
k

]

=
1
4

∑

k

sktk (−)1+δjk+δk0+δj0+δk2 . (12)

Equation (12) is a linear system with unknowns {sj},
which can be solved upon assuming the condition tk �=
0 ∀k i.e. the probe state should be distributed in the whole
Hilbert space with nonzero component in any subspace.
Inverting equation (12) we arrive at

sj =
1
tj

(−1)1+δj0+δj2

3∑

k=0

(−1)1+δk0pk. (13)

The case j = 0 in equation (13) is just the normalization
of the probabilities, while the others provide the three co-
efficients {sj} in terms of the coefficients {tk}, fixed by
the observer, and of the experimental probabilities {pk}.
Notice that a similar derivation may be easily obtained for
different Bell measurements, based on different projectors
over maximally entangled states, whereas for factorized
measurements there is no way to reliably recover the sig-
nal density matrix. Notice, however, that classically corre-
lated measurements, i.e. factorized measurements assisted
by classical communication between system and probe,
may be devised for state reconstruction upon a suitable
choice of the communication protocol [30].

4 State reconstruction for qudits

The method outlined in the previous Section can be gen-
eralized to systems described by a Hilbert space of arbi-
trary finite dimension d (qudit). To this aim we introduce
a convenient d-dimensional representation for the signal
and the probe states, which generalizes the Pauli matrix
description and will be used to define the Bell observable
as well.

Let us consider the set of d2 unitary transformations
U(n,m): Cd → Cd defined by

U(n,m) =
d−1∑

k=0

e
2πi

d kn|k〉〈k ⊕m| (14)

where n and m range in 0, d− 1 and ⊕ denotes the addi-
tion modulo d. The unitaries U(n,m) form a unitary irre-
ducible non-Abelian representation of the Abelian group
Z

dZ
× Z

dZ
. In order to use these unitaries as a basis for

L [Cd → Cd
]

we have to check trace, composition law and
orthogonality (see Appendix):

1. trace: U(n,m) are zero trace matrices except for
n,m = 0; U(0, 0) = I, Tr [U(0, 0)] = d;

2. composition law:

U(n,m)U(p, q) = e
2πi
d mp U(n⊕ p,m⊕ q); (15)

3. orthogonality:

〈〈U(p, q)|U(n,m)〉〉 = Tr
[
U †(p, q)U(n,m)

]

= dδnpδmq. (16)

Analogously, one can easily show that the states
|U(n,m)/

√
d〉〉 form an orthogonal, maximally entangled

basis for the bipartite space Cd ⊗ Cd. We can now define
a Bell observable in dimension d as

B =
∑

kl

λklΠkl (17)

where

Πkl =
1
d
|U(k, l)〉〉〈〈U(k, l)|. (18)
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The state of the system can be expressed in terms of the
unitaries U(n,m) by generalizing the Bloch description as
follows

� =
1
d

d−1∑

n=0

d−1∑

m=0

snm U(n,m). (19)

We have to impose some conditions on the coefficients
snm such that � in equation (19) describe a density ma-
trix. Unit trace imposes s00 = 1 whereas hermiticity, using
equation (51), rewrites as

∑

nm

snmU(n,m) =
∑

pq

s∗pqU
†(p, q)

=
∑

pq

s∗pqe
2πi
d pq U(−p,−q)

leading to

snm = s∗−n,−me
2πi
d nm = s∗d−n,d−me

2πi
d nm. (20)

In addition, since for any density operator Tr
[
�2
] ≤ 1 the

coefficients snm must obey the further condition

d−1∑

n=0

d−1∑

m=0

|snm|2 ≤ d. (21)

Notice that the two-dimensional case is recovered by
taking U(0, 0) = σ0, U(0, 1) = σ1, U(1, 1) = −iσ2,
U(1, 0) = σ3.

In order to simplify the calculation of probabilities
we describe the probe state in the basis U∗(p, q) i.e.
τ = 1

d

∑
pq tpqU

∗(p, q). The signal/probe state is thus
given by

�⊗ τ =
1
d2

∑

nm

∑

pq

snm tpq U(n,m) ⊗ U∗(p, q). (22)

The probability of the outcome λkl in the measurement of
the d-dimensional Bell observable (17) is given by

pkl = 〈〈 1√
d
U(k, l)|�⊗ τ | 1√

d
U(k, l)〉〉

=
1
d
〈〈U(k, l)|�U(k, l)τT 〉〉

=
1
d3

〈〈U(k, l)|
∑

nm

∑

pq

snmU(n,m)U(k, l)tpqU
†(p, q)〉〉

=
1
d3

∑

nm

∑

pq

snmtpq

× Tr
[
U †(k, l)U(n,m)U(k, l)U †(p, q)

]
. (23)

Using equations (15), (52) and (16), equation (23)
rewrites as

pkl =
1
d3

∑

nm

∑

pq

snmtpq

× Tr
[
e−

2π
d l(n−k)U(n− k,m− l)U(k, l)U †(p, q)

]

=
1
d3

∑

nm

∑

pq

snmtpq

× Tr
[
e−

2π
d l(n−k)e

2π
d k(m−l)U(n,m)U †(p, q)

]

=
1
d3

∑

nm

∑

pq

snmtpqe
2π
d (km−ln)Tr

[
U(n,m)U †(p, q)

]

=
1
d3

∑

nm

∑

pq

snmtpqe
2π
d (km−ln) (dδnpδmq) , (24)

and finally

pkl =
1
d2

∑

pq

spq tpq e
2πi
d (kq−lp). (25)

Equation (25) is a linear system in the d2 unknowns
{snm}, which can be solved upon the assumption tnm �= 0
∀n, ∀m. By inverse discrete Fourier transform we get

smn =
1
d2

1
tmn

∑

kl

pkl e
2πi

d (lm−nk). (26)

Analogously to the bidimensional case, also state recon-
struction for qudits may be based on any other Bell mea-
surement, whereas factorized measurements are useless for
this purpose.

5 Reconstruction of the expectation value
of generic operator

So far we have considered the reconstruction of the ele-
ments of the density matrix. If the quantity of interest
is the expectation value of a generic operator X we may
obtain it according to the Born rule 〈X〉 = Tr [�X ], by
expanding X in the basis used for the reconstruction of
the density matrix. On the hand, it is possible to obtain
〈X〉 directly from the experimental data, without the in-
between step of reconstructing the matrix elements. This
result, which will be also useful in discussing statistical
errors, may be achieved by introducing a set of functions,
called pattern functions, which gives the desired expecta-
tion value when averaged over the outcomes of the Bell
measurement. This procedure has been referred to as uni-
versal detection [11,24]. In this Section we focus on the
derivation of the pattern function for a generic opera-
tor X , which may also correspond to quantities that are
not directly observable. Our derivation is similar to that
of reference [24]. Pattern functions depend on the probe
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state τ and on the operator X , and are defined through
the relation

Tr [�X ] ≡
d2−1∑

ν=0

Rν [τ,X ]pν = R [τ,X ] (27)

where pν is again the probability of the outcome λν .
Throughout this section {Uν} denote the set of unitaries
involved in the Bell measurement, labeled by a single poly-
index in order to simplify notation.

In order to get an expression for the pattern function
in terms of known quantities only we will use few other
properties of the Hilbert spaces H1 ⊗ H2 and L[H1 →
H2]. At first we expand the generic operator X using the
unitaries Uν as a basis:

X =
1
d

d2−1∑

λ=0

Tr
[
XU †

λ

]
Uλ, (28)

which also implies the relation

1
d

d2−1∑

λ=0

UλX U †
λ = ITr [X ] . (29)

In order to prove (29) let us introduce the operator
B =

∑d2−1
λ=0 UλX U †

λ and notice that Tr [B] = d2Tr [X ].
In addition, using equation (15) we have

UνB =
d2−1∑

λ=0

UνUλXU
†
λU

†
νUν =

d2−1∑

λ

Uµe
iανλXU †

µe
−iανλUν

=
d2−1∑

µ=0

UµXU
†
µUν = BUν ∀λ, (30)

that is, B commutes with the set of unitaries Uν . As a
consequence, using Schur’s lemma, we have B = λI and
thus Tr [B] = dλ which, in turn, leads to λ = dTr [X ] and
to equation (29).

The composition property of the unitaries Uν will be
also useful. Using equations (15) and (52) one arrives at

UλUνU
†
λ = Uνe

−iφλν (31)

which also implies

e−iφλν =
1
d

Tr
[
U †

νUλUνU
†
λ

]
. (32)

We are now in the position of deriving a compact formula
for the pattern functions (27). Starting from (28):

Tr [�X ] =
1
d

d2−1∑

λ=0

Tr
[
XU †

λ

]
Tr [�Uλ]

=
1
d

d2−1∑

λ=0

Tr
[
XU †

λ

]

Tr
[
U †

λτ
T
] Tr

[
�Uλ Tr

[
U †

λτ
T
]]

=
1
d2

d2−1∑

λ=0

Tr
[
XU †

λ

]

Tr
[
U †

λτ
T
] Tr

⎡

⎣�Uλ

d2−1∑

ν=0

UνU
†
λτ

TU †
ν

⎤

⎦

=
1
d2

∑

λν

Tr
[
XU †

λ

]

Tr
[
U †

λτ
T
] Tr

[
�UλUνU

†
λτ

TU †
ν

]

=
1
d2

∑

λν

Tr
[
XU †

λ

]

Tr
[
U †

λτ
T
] e−iφλν Tr

[
�Uντ

TU †
ν

]
. (33)

Finally, using

Tr
[
�Uντ

TU †
ν

]
= Tr

[|�Uντ
T 〉〉〈〈Uν |

]

= Tr [�⊗ τ |Uν〉〉〈〈Uν |] = d pν (34)

we arrive at

Rν [τ,X ] =
1
d

d2−1∑

λ=0

Tr
[
X U †

λ

]

Tr
[
U †

λ τ
T
] e−iφλν . (35)

For any given operator X the pattern function Rν [τ,X ]
can be evaluated through equation (35), upon the knowl-
edge of the state of the probe. The latter is subjected to
the constrain Tr[U †

λτ
T ] �= 0 for any λ such that Tr[XUλ] �=

0, i.e the probe should have a non zero component in any
subspace where the operator of interest is non zero.

6 Optimization of the pattern functions

Using equation (27) one has that the expectation value of
the operator X may be obtained by evaluating the corre-
sponding pattern function through equation (35) and then
averaging it over the outcomes of the Bell measurement.
In other words, the function R[τ,X ] is the statistical esti-
mator for the quantity 〈X〉. Suppose that N experimental
runs have been performed, then the estimation of the ex-
pectation value is given by the sample average

X ≡ R[τ,X ] =
∑

ν

pνRνj [τ,X ] −→
∑

j∈data

Rνj [τ,X ],

(36)
whereas the confidence interval on this determination cor-
responds (since the estimators satisfy the hypothesis of the
central limit theorem) to the rms deviation of the estima-
tor divided by the square root of the number of runs, i.e.

δX =
1√
N

√
∆R2[τ,X ] (37)



144 The European Physical Journal D

where ∆R2[τ,X ] = R2[τ,X ] −∆R[τ,X ]
2

and R2[τ,X ] =∑
ν pνR

2
νj

[τ,X ] → ∑
j∈dataR

2
νj

[τ,X ]. A question arises
on whether it is possible to minimize the confidence inter-
val for any given operator by a suitable preparation of the
probe. Notice that being the unitaries Uν a basis for the
space of operators the pattern function for a given opera-
tor is unique and there are no null functions [31]. In order
to optimize pattern functions let us start by expanding the
operator X in the Uν basis as X =

∑
ν xνUν and take the

derivative of the rms deviation with respect to the probe
matrix elements

∂

∂tp
∆R2[τ,X ]=

∑

ν

[
2pνRν [τ,X ]

∂Rν[τ,X ]
∂tp

+R2
ν [τ,X ]

∂pν

∂tp

+ 2R[τ,X ]
(
pν
∂Rν [τ,X ]

∂tp
+Rν [τ,X ]

∂pν

∂tp

)]
(38)

=
1
4

[
sp

(
1 + 2R[τ,X ]

)
A− 4

xp

t2p

(
B + R[τ,X ]C

)]
(39)

where

A =
∑

ν

exp [−iφpν ]Rν [τ,X ] (40)

B =
∑

ν

exp [−iφpν ] pν Rν [τ,X ] (41)

C =
∑

ν

exp [−iφpν ] pν (42)

with exp [−iφpν ] given in equation (32). By solving the
systems of nonlinear equations

∂

∂tp
∆R2[τ,X ] = 0 p = 1, 2, 3, (43)

one arrives at the optimal probe preparation to minimize
statistical errors in the reconstruction.

As an example, let us know reconsider the reconstruc-
tion of the density matrix for a qubit system. The pattern
functions for the three components of the signal Bloch
vector, i.e. for the expectation values of the three Pauli
matrices σk, and the corresponding rms deviations, are
given by

Rν [τ, σk] =
(−1)δkν+δν2

tk
(44)

∆R2[τ, σk] = −s2k +
1
t2k
. (45)

As it is apparent from equation (45) an optimized choice
τ∗ for the probe preparation in order to minimize the er-
ror in the reconstruction of 〈σk〉 ≡ sk is given by tk = ±1
and tj = 0 for j �= k, independently on the signal un-
der investigation. Notice that in this case the rms devia-
tion ∆R2[τ∗, σk] equals the intrinsic quantum uncertainty
∆σ2

k = 〈σ2
k〉 − 〈σk〉2 = 1 − s2k of a spin measurement in a

given direction, i.e. the noise added by the indirect recon-
struction with respect to the direct measurement of the

same quantity [32] vanishes. If one is interested in recon-
structing the whole density matrix, the prescriptions to
optimize the pattern functions for the three Bloch com-
ponents are mutually incompatible and one is faced with
the problem of choosing the best strategy. A first strategy
could be that of a “balanced” probe preparation t2k = 1/3,
which is suboptimal for each component, but nevertheless
allows to use each datum for the reconstruction of all the
components. The confidence intervals on the reconstruc-
tions are given by

δσk =

√
3 − s2k
N

. (46)

On the other hand one may allocate one third of the runs
to the optimal reconstruction of each components (and, in
turn, without using the same data to reconstruct the other
components). The corresponding confidence intervals are
then given by

δσk =

√
3(1 − s2k)

N
. (47)

As it is apparent from equations (46) and (47) the second
choice is always convenient, independently on the signal
under investigation i.e. the optimization is useful to min-
imize statistical errors.

Concerning quantities that are not observables we con-
sider, as an example the reconstruction of the expectation
value of the operator σ+ = (σ1+iσ2)/2 on a qubit system.
We have

Rν [τ, σ+] = (−1)δν0

[
i
(−1)δν2

t2
− (−1)δν1

t1

]
· (48)

Since 〈σ+〉 is a complex quantity, confidence intervals
should be provided on the real and the imaginary part
separately, which in turn correspond to components of
the Bloch vectors already discussed above. Finally, for the
generic combination σα = sinασ1 + cosασ2 we have

∆R2[τ, σα] = −(s1 sinα+ s2 cosα)2

+
cos2 α
t22

+
sin2 α

t21
− 2 sinα cosα

t3
t1t2

. (49)

Since the present reconstruction method is devised to work
without any a priori information we average the rms de-
viation in equation (49) over the whole Bloch sphere and
look for an optimized probe preparation valid for an un-
known input signal. In this case one easily prove that the
optimal probe τ∗ is defined by t3 = 0, t21 = t22 = 1/2, for
which we have ∆R2[τ∗, σα] = 4 − (s1 sinα+ s2 cosα)2.

Notice that the optimization above are suitable for the
measurement of the specific observable under investiga-
tion. In cases when several observables are of interest at
the same time the optimal probe should be a balanced
superposition. If the set of observables is large, then the
optimal probe approaches the pure balanced superposi-
tion, t1 = t2 = t3 = 1/

√
3, representing the state most

spread in the Hilbert space.
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In order to check the statistical reliability of our
method we have performed several Monte Carlo simulated
experiments. Here we report few results for qubit systems.
The aim is twofold: on the one hand we prove the sta-
tistical reliability of the method by checking the scaling
of the confidence interval versus the number of runs and
probe parameters and, on the other hand, we show the ef-
fectiveness of the optimization method developed above.
We focused on the operator σx = σ1. We fixed the sig-
nal state in the eigenstate |+〉x of σx, corresponding to
the Bloch vector (1, 0, 0). For the probe we used three
different states: the almost ideal pure state t1 = 0.9999,
t2 = t3 = 1√

2

√
1 − 0.99992 (in order not to violate the con-

dition ti �= 0), the pure balanced state t1 = t2 = t3 = 1/
√

3
and a generic mixed state defined by the Bloch vector (0.1,
0.3, 0.2). The number of runs in the simulated experiments
ranges from 104 to 105 and for each set of runs we calcu-
lated the mean value, that is the expectation value for σx

on the state |+〉x, and the confidence interval δx.
The results are reported in Figure 2. As it is apparent

from the plot there is an excellent agreement, either as
concern the confidence interval, as well as for the scaling
versus the number of runs. We then simulated 105 mea-
surements with the same signal and the almost ideal probe
state and we repeated the process 10 times (changing the
random seed) arriving at δx = (5±1)×10−5 in agreement
with the theoretical value δx = 4 × 10−5, as calculated
from equation (45).

7 Conclusions

We have addresses quantum state reconstruction for d-
dimensional systems assisted by entangled measurements.
In our scheme the system of interest is jointly detected
together with a probe through the measurement of a
single entangled observable defined on the bipartite sys-
tem/probe Hilbert space. We have shown that the statis-
tics of the measurement and the knowledge of the probe
preparation suffice to reliably reconstruct the density ma-
trix of the system, as well as the expectation value of any
desired operator. Being suitable to reconstruct the expec-
tation value of all the system observables, our method is
subjected to larger statistical errors with respect to the di-
rect measurement of each observables. On the other hand,
the statistical errors in the reconstruction may be opti-
mized by tuning the probe preparation, thus minimizing
the added noise.

This work has been supported by MIUR through the project
PRIN-2005024254-002.

Appendix: Properties of the unitaries U(n, m)

As concerns the operator trace, we have

Tr [U(n,m)] =
d−1∑

h=0

d−1∑

k=0

e2πikn/d〈h|k〉〈k⊕m|h〉 = dδn0 δm0.

Fig. 2. Monte Carlo simulated experiments for the reconstruc-
tion of the expectation value of the operator σx on the qubit
signal state |+〉x. The dashed line with × symbols corresponds
to the reconstruction obtained using the pure balanced state
t1 = t2 = t3 = 1/

√
3 as a probe qubit, whereas the contin-

uous line with + symbols corresponds to the probe prepared
in mixed state (0.1, 0.3, 0.2). In the inset we show the re-
sults for the probe in the almost ideal pure state t1 = 0.9999,
t2 = t3 =

√
1 − 0.99992/

√
2. In both plots the horizontal line

represents the theoretical expectation value (〈σx〉 = 1).

The condition for non-zero trace is therefore n,m = 0 and
of course U(0, 0) = I, Tr [U(0, 0)] = d. Consider now the
composition U(n,m)U(p, q). We have

U(n,m)U(p, q) =
d−1∑

k=0

e2πikn/d|k〉〈k ⊕m|

×
d−1∑

h=0

e2πihp/d|h〉〈h⊕ q|

=
d−1∑

k=0

d−1∑

h=0

e2πikn/de2πihp/d|k〉〈h⊕ q|δk+m,h

=
d−1∑

k=0

e2πik(n+p)/de2πimp/d|k〉〈k ⊕ (m+ q)|

= e
2πi

d mp U(n⊕ p,m⊕ q) (50)

thus leading equation (15). Concerning orthogonality,
we have from equation (3) that 〈〈U(p, q)|U(n,m)〉〉 =
Tr
[
U †(p, q)U(n,m)

]
. Therefore, one can write U †(p, q) as

U †(p, q) =
d−1∑

h=0

e−
2πi

d hp|h+ q〉〈h|

=
d−1∑

n=0

e−
2πi
d (n−q)p|n〉〈n− q|

=
d−1∑

n=0

e−
2πi
d npe

2πi
d pq|n〉〈n− q|

= e
2πi

d pqU(−p,−q). (51)
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This result, together with the composition rule (15)
leads to

U †(p, q)U(n,m) = e
2πi
d pq e−

2πi
d qn U(n− p,m− q)

= e
2πi
d q (p−n) U(n− p,m− q) (52)

where the subtraction of the indexes still obeys to the
group equivalence relations. Since only U(0, 0) has non-
zero trace one finally arrives at equation (16).
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